
Implementing the Twelve-Factor App
Methodology for Developing Cloud-

Native Applications

By, Janakiram MSV

Executive Summary
Application development has gone through a fundamental shift in the recent past.
Developers are under pressure to deliver software that runs in a variety of environments
including enterprise data centers and cloud platforms. The modern software is expected
to scale with no major changes to the code. Software has to be shipped rapidly to deliver
new features and user experiences.

In the era of web, mobile, and device computing, application development needs to
adopt a new methodology. The rise of cloud, containers, and microservices has led to a
new paradigm of developing and deploying software. The twelve-factor app methodology
advocates a set of patterns and practices for designing contemporary applications that
take advantage of cloud infrastructure. Since these applications are born in the cloud to
exploit the capabilities of modern infrastructure, they are often referred as cloud-native
applications.

This report attempts to introduce the twelve-factor app methodology to developers
focused on building contemporary, cloud-native applications.

Key Attributes of Cloud-Native Applications
Cloud-native applications are differentiated from their counterparts based on their
packaging, deployment, configuration, and modularity. They have the following
attributes:

• Automated - Cloud-native apps separate the code from configuration. The
external configuration declared outside of the code encourages automation,
which reduces the cost of deployment. It also delivers consistency and
repeatability of deployments.

• Portable - Cloud-native apps have zero dependency on the underlying operating
system and cloud infrastructure. They are easily ported across multiple
environments with no changes to the code.

• Agile - The components or modules of cloud-native apps can be rapidly
upgraded with minimal disruption to the system. They follow the principles of
continuous deployment for moving the code from development environments to
production.

• Elastic - Cloud-native apps can run in highly constrained environments with
minimal resources or can be scaled to support a large number of users. They can
be scaled-in and scaled-out with no changes to the application code.

The Twelve Factors
The twelve-factor app methodology was originally conceived to define the patterns for
applications targeting PaaS offerings such as Heroku and Engine Yard. Given the
resemblance between PaaS and container platforms, these principles are applicable for
modern, cloud-native applications.

Below is a list of the patterns and practices advocated by this methodology.

1. Codebase
The very first principle of the methodology is related to versioning and tracking the code.
The entire code base that belongs to the application must be stored in one repository
such as Git or SVN. There may be multiple versions or branches but there must be a
clear 1:1 correlation between the code, repo, and the application. The running instance
of code is called as a deployment. There may be multiple deployments of the same
codebase running in different environments such as staging and production.

Key takeaway - Maintain one and only one codebase for all the modules
associated with the application.

2. Dependencies
An application must explicitly declare all the dependencies. It cannot make assumptions
about the availability of dependencies. It is the job of the platform to ensure that all the
dependencies declared by the app are available at runtime. Examples of such
declarations include Ruby Gem files and a Node.js Package.json file. The clean
separation between code and dependencies enables DevOps to do their job efficiently.
The operations team can ensure that the dependencies are met while developers stay
focused on the code.

Key takeaway - Applications cannot make assumptions about dependencies.
Always explicitly declare the dependencies.

3. Configuration
This principle emphasizes on the clean separation of configuration and code. The
separation can be achieved through environment variables. Since the application can
retrieve the configuration at runtime, the same codebase can be seamlessly deployed in
multiple environments with no changes. For example, the database connection string
can be passed as an environment variable to the application, which can be different
between development, testing, and production environments. Though configuration can
be moved to files that are managed by the same version control system, environment
variables are better suited as they are always expected at a well-known location.
Configuration files have the risk of getting fragmented and duplicated.

Key takeaway - Store configuration in environment variables and read them at
runtime.

4. Backing Services
The fourth factor deals with the backing services management. Backing services are
external services, which an app depends on over a network connection. This can be a
local database service such as MySQL or MongoDB or any other 3rd party service such
Amazon RDS or mLab. For a twelve-factor app, the interface to connect to these various
services should be defined in a standard way. In most cases it would be accessed over
a URL with credentials stored in the config. There should not be any code changes when
switching between the local and remote services. For example, a twelve-factor app
should be able to switch between a local MySQL database and a remote one by simply
changing the config.

Key takeaway - Treat backing services as attached resources.

5. Build, Release, Run
This principle emphasizes clean separation of the stages in the software lifecycle. The
build stage must deal with building the binaries by combining the code, dependencies,
and other assets. The outcome from this phase is an executable bundle. The release
stage combines the output from the build stage with the configuration specific to an
environment, making it ready for a set of target environments. The final stage, run,
executes the app in the select environment by choosing the right release from the
previous stage.

Key takeaway - Strict separation of build, release, and run stages

6. Processes
The application is expected to run in an execution environment as one or more
processes. Processes are completely stateless and share-nothing. The app cannot
assume the presence of a local file, cache, or a database. Instead, it is expected to
access it from a well-known location. An example of this includes moving files from a
local file system to an object storage system like Amazon S3. Each process has to
download its own copy to access the content. This encourages scalability in which the
application can run simultaneously across multiple execution environments.

Key takeaway - Strict separation of stateful and stateless services

7. Port Binding
Cloud-native applications are exposed through a URL but cannot assume the port
binding through which they are exposed to the external network. In most of the cases,
there would be a proxy or a frontend server that forwards the requests to the backend
application. Applications must bind themselves to a port that is externally declared in the
configuration file. They should work in environments where they are exposed via
external-facing services.

Key takeaway - Export services via port binding

8. Concurrency
Processes in twelve-factor apps are treated as first-class citizens. Each process should
be able to scale, restart, or clone itself when needed. This loosely-coupled model
enables scale-out architectures. For example, when the traffic increases to a web server,
there may be multiple web processes responding to the requests. The worker processes
responsible for dealing with the messages are scaled independent of the web
processes. The web and worker processes may be connected via a message queuing
system. This approach will improve the reliability and scalability of the application.

Key takeaway - Scale out via the process model

9. Disposability
The ninth factor emphasizes the robustness of an application through faster startup and
shutdown methods. It is recommended that applications try to minimize the startup time
for each process. This brings agility to the overall release process. Processes should
shutdown gracefully against sudden death in the case of hardware failures. Applications
can rely on robust queuing backends such as Beanstalkd and RabbitMQ that will return
unfinished jobs back to the queue in the case of a failure.

Key takeaway - Maximize robustness with fast startup and graceful shutdown

10. Dev/Prod Parity
Twelve-factor apps are designed for continuous deployment by keeping the gap
between development and production small. Consistency is key in bringing parity across
dev, test, staging, and production environments. When deployment environments are
similar, testing and developing gets much simpler. Consistent environments ensure that
areas such as the infrastructure stack, config management processes, software and
runtime versions and deployment tools are the same everywhere.

Since the test cases are applied on production-level data, this approach reduces the
bugs in the production environment.

Key takeaway - Keep development, staging, and production as similar as possible

11. Logs
Logging plays an important role in debugging and maintaining the overall health of an
application. At the same time, an application in itself shouldn’t burden itself with the
storage of logs. Instead, the logs should be treated as a continuous stream that is
captured and stored by a separate service. Each running process may write its event
stream, unbuffered, to stdout. During local development, the developer can view this
stream in the foreground of their terminal to observe the app’s behavior. In staging or
production environments, the logs are routed to one or more final destinations for
viewing and long-term archival.

Key takeaway - Treat logs as event streams

12. Admin Processes
Applications often deal with one-off administrative processes such as initializing a
database, cleaning up the database, and migration of servers. These processes should
be run in an identical environment as the regular long-running processes of the app. If
they run against a specific release, they should use the same codebase and config as
any process run in that release. Admin code must ship with application code to avoid
synchronization issues. Twelve-factor methodology prefers languages that provide a
REPL shell out of the box, which makes it easy to run one-off scripts.

Key takeaway - Run admin/management tasks as one-off processes

DreamFactory as a Twelve-Factor Application
DreamFactory is an API-first platform to develop data-driven applications. It exposes a
variety of databases and data stores as standard REST APIs. DreamFactory is
architected based on the twelve factors of modern application development.

DreamFactory is maintained as a single repository on Github that can be easily cloned
or forked. Since the platform is built on top of PHP and Laravel frameworks, the
dependencies are clearly defined in composer.json. The configuration is maintained in a
set of environment variables, making it easy to deploy in multiple environments.
DreamFactory can run in a variety of environments ranging from Raspberry Pi to the
leading web-scale cloud platforms.

Developers can easily integrate DreamFactory with their containerized applications. The
platform can be deployed on Docker Swarm, Kubernetes, and Mesosphere
environments.

Summary
The twelve-factor app methodology helps developers with the best practices for building
cloud-native applications. By adopting these principles, they can design, develop, and
deploy applications that are reliable, portable, scalable, and extensible. These principles
are highly relevant for the modern-day applications that target web, mobile, and device
users.

DreamFactory can be integrated with the cloud-native applications for easier integration
with legacy and modern data sources.

	

